As its name suggests, “analytic philosophy” seems to be characterized by analysis as its characteristic method. However, the use of analysis goes back much further in the history of philosophy and other disciplines, including mathematics, chemistry, etc. Moreover, methods close to it have been employed in other philosophical traditions too, e.g., under the rubric of “definition”. In this class, we will attempt to get clearer about what is, or could be, meant by “analysis” in philosophy. We will approach this topic by considering some classic cases from early analytic philosophy, concerning the notions of number (Frege, Russell), definite description (Russell, Strawson), logical consequence (Frege, Tarski), computability (Turing), explanation (Hempel & Oppenheim, Scriven), and knowledge (Gettier etc.). Reflecting on them, we will distinguish several conceptions of analysis, including: the search for "necessary and sufficient conditions"; the exhibition of "logical form"; "explication" in Carnap's more pragmatic sense; what Strawson calls “connective analysis”; and "model building" in philosophy. We also will isolate several aspects or moments of analysis: a "regressive" moment, a "resolutive" moment, and an "interpretive/transformative" moment (Beaney). And we will address the “paradox of analysis” (Moore), together with some other criticisms of analysis in its simpler forms (Wittgenstein, Quine, and "experimental philosophy"). The upshot will be that, if studied (analyzed!?!) carefully, analysis turns out to be more subtle, varied, and multi-faceted than often assumed. Overall, the class also serves as an introduction to 20th-century analytic philosophy, with special emphasis on its meta-philosophical side.

TEXTS:
A series of articles or excerpts from books, all made available online (texts by Frege, Russell, Strawson, Tarski, Turing, Hempel, Scriven, Carnap, Beaney, Reck, Williamson, etc.; see the bibliography below).

COURSE REQUIREMENTS:
(a) Doing the reading and, on that basis, active participation in class discussions (at least to some degree) – 10%
(b) A shorter (ca. 5 pages) midterm paper (topics to be provided by the instructor) – 40% for undergraduates, 20% for graduate students
(c) For grad. students only: a 15-minute “poster presentation” in class – 20%
(d) A longer term paper (undergr.: ca. 10p.; grad. students: ca. 15 p.) – 50%
SYLLABUS

Week (1) General introduction to our topic, including: analyzing the concept of knowledge, from Plato to Gettier, as a first example; Moore’s “paradox of analysis”; some other general challenges, by Wittgenstein, Quine, and recent experimental philosophy.

Part I: Paradigms from Early Analytic Philosophy

Week (2) Frege and Russell on the natural numbers
Week (3) Russell and Strawson on definite description
Week (4) Frege (plus Hamilton) and Tarski on logical consequence
Week (5) Turing (plus Copeland) on computability and decidability
Week (6) Hempel & Oppenheim and Scriven on scientific explanation

Part II: Variants and Moments of Analysis

Week (7) Carnap (plus Reck) on explication and its pragmatic desiderata
Week (8) Strawson on connective versus reductive analysis
Week (9) Beaney’s historical survey and systematic discussion
Week (10) Reck and Williamson on model building in philosophy

Part III: Presentations and Conclusion

Week (11) Poster presentations
Week (12) Concluding reflections, including further responses to Moore, Wittgenstein, Quine, and the experimental philosophers
Bibliography for the Class
(some voluntary background reading may be added later on)

______: Excerpts (survey and general discussion) from the entry "Analysis" in the Stanford Encyclopedia of Philosophy, 2014


Carnap, Rudolf: Chapter 1 (on explication) of Logical Foundations of Probability, 1950

Frege, Gottlob: Excerpts (on his deductive system for propositional logic) from Begriffsschrift, 1879
______: Excerpts (on number) from The Foundations of Arithmetic, 1884

Hamilton, A.G.: Chapter 2 (on deduction in propositional logic, parallel to Frege) from Logic for Mathematicians, 1988


______: "Hempel, Carnap, and the Covering Law Model", 2013

Russell, Bertrand: Excerpts (on numbers and on descriptions) from Introduction to Mathematical Philosophy, 1918
______: "On Denoting", 1905

Scriven, Michael: "Explanation, Predictions, and Laws", 1962

Strawson, Peter: "On Referring", 1950
______: "Construction and Analysis", 1956
______: Excerpts (on reductive and connective analysis) from Analysis and Metaphysics, 1992

Tarski, Alfred: "On the Concept of Logical Consequence", 1936

Turing, Alan: "On Computable Numbers", 1936

Williamson, Timothy: "Model-Building in Philosophy", forthcoming